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THE THERMOPHYSICAL PROPERTIES OF SOME
MULTILAYER INSULATORS AT
CRYOGENIC TEMPERATURES

by
L. B. Golovanov

The thermal conductivity coefficients for a number of multilayer insula-
tions are given. The dependence of the value of the thermal conductivity
coefficient on the pressure in the insulation space, at different compressions
of insulation, was found. The coefficient of thermal conductivity was determined
at the boundary temperatures 293 to 77.6°K, 293 to 20.4°K, and 294 to 4°K.

The insulation was pressed from 1 g/cm? up to 1000 g/cm?. The pressure in
insulation space varied from 1 X 10™°to 1 % 10~' mm Hg.

The Cyrogenic Division of the Joint Institute of Nuclear Research had
developed a device and the methods of measuring the coefficients of heat con-
ductivity of multilayer insulators.! Unlike the existing devices, the new device
makes it possible to determine the value of the coefficients of heat conductivity
of insulators and also to estimate the error of the measurement. The results
obtained by measuring some of the insulators are cited in this article.

The investigation disclosed a relationship between the coefficient of
heat conductivity of insulators, the pressure in the insulated space, and the
specific pressure applied to the insulators. The investigation was carried out
at constant boundary of warm temperature (293°K) and at various boundary
cold temperatures: nitric, hydrogen, and helium. Also found was the relation-
ship between the specific pressure on insulators and the relative deformation,

number of layer per 1 cm of thickness, and the weight by volume of multilayer
insulators.

SELECTING THE RANGE OF CHANGES IN PARAMETERS
WHICH AFFECT THE VALUE OF THE COEFFICIENT
OF HEAT CONDUCTIVITY OF INSULATORS

The Pressure in the Insulated Space

The pressure in the insulated space varied from 1 x 103 to 1 x 10~
mm Hg. The choice of the lower pressure limit of 1 x 10™> mm Hg was based

Ty, B. Golovanov, OSOBENNOSTI IZMERENIYA KOEFFITSIENTOV TEPLOPRO-
VODNOSTI MNOGOSLOYNYKH IZOLYATSIY (Special Features in Measuring the
Coefficients of Heat Conductivity of Multilayer Insulations), preprint R8-3236

of OIYal (Joint Institute of Nuclear Research), Dubna, 1967.



on the fact that such a vacuum can be produced by a conventional diffusion
pump - also, because beginning with a pressure of 1 x 10™* and below, the
coefficient of heat conductivity p9 of multilayer insulators depends on the
pressure. The choice of upper limit of 1 x 10~! mm Hg of pressure was
influenced by the ease with which this pressure can be obtained with the aid of
an ordinary forevacuum pump. The coefficient of heat conductivity of the
insulators was measured at 20.4°K as the cold-wall temperature at pressures
varying from 1 x 107° to 1 x 10~ mm Hg, while at a cold-wall temperature of
4.2°K, the pressure varied between 1 x 107® and 1 x 1073 mm Hg. Reduced
pressure ranges were used because the use of multilayer insulations at the
initial vacuum for heat insulating of liquid hydrogen and helium is expedient
due to the low heat of evaporation of these liquids and to the comparatively
large coefficient of insulator's heat conductivity at the initial vacuum.

The Specific Pressure on the Insulation

The specific pressure on the insulation varied from 1 to 1000 g/cm?.
The choice of the lower limit of 1 g/cm? was governed by the following con-
siderations: '

1. Under actual conditions it is extremely difficult to insulate
surfaces (particularly horizontal surfaces) by compressing the insulation
with a pressure of less than 1 g/cm?.

2. A specific pressure of 1 g/cm? is only several times larger
than pressure exerted by the weight of the specimen.

3. In determining the coefficient of heat conductivity of an insula-
tion under a load close to zero, there will appear errors due to the indetermi-
nancy of the contact between the insulation layers and the cold surface of the
device because a part of the heat flux from the face of the insulation is not
removed by the surface of the protective tank.

The choice of the upper limit of 1000 g/ cm? was determined by the
design of the vessels in which both or one of the walls (inside or outside) were
flexible.

The Accuracy of the Measurements

The accuracy in measuring the coefficient of heat conductivity with the
method of OIYal (Joint Institute for Nuclear Research) varied on the average
from 18 to 40 percent. The pressure in the insulating space was measured with
an accuracy not exceeding 20 percent. The specific pressure on the insulation
was determined with an accuracy of 10 percent.




The Properties of the Insulators

Let us first consider the mechanical properties of the insulation, such

as the relationship between the specific pressure applied to the insulation and
the volumetric weight, number of layers per 1 cm of thickness, and the coeffi-

cient of relative deformation. The investigated insulation specimens which
had as their gasket materials SBR-sandpaper 50 u thick and EVTI spun glass
100 u thick were shielded by aluminum-plated lavsan-films 12 uthick and
aluminum foil with 10 and 30 u in thickness.

The relationship between the volumetric weight of the listed insulations
and the specific pressure applied to them is shown in Figure 1.

Figure 1 shows that, depending onthe thickness and density of the
material, the volumetric weight of the insulation varies from 100 to 200 kg/m?®
when the load on the insulation is 1 g/cm? and from 300 to 600 kg/m? for a
load equal to 1000 g/cm?. On the average, there is a threefold increase in the
volumetric weight of the insulation compressed from 1 to 1000 g/cm?,

Figure 2 shows the relationship between the number of layers per 1 cm
of thickness and the specific pressure applied to the insulation. The number of
layers for an insulation with a gasket material made of spun glass is about
20 layers per centimeter for a specific pressure of 1 g/ cm?; it is equal to 30
layers per centimeter for sandpaper. As the load is increased to 1000 g/ cm?,
the number of layers increases to 60 layers per centimeter for spun glass and
to 150 layers per centimeter for sandpaper.

The relationship between the coefficient of relative deformation and the
specific pressure on the insulation is shown in Figure 3. The coefficient of the
relative deformation was defined as the ratio of the height of a specimen under
a load p to the height of the an insulation specimen under a load of 1 g/ cm?,
Under a load of 1000 g/cm?, the coefficient of relative deformation varies from
0.31 to 0.37, depending on the properties of the gasket material and of the
shields.

Let us consider the affect of various factors on the value of the co-
efficient of heat conductivity.

In Figure 4 is shown the relationship between the coefficient of heat
conductivity of a multilayer insulation consisting of sandpaper and aluminum
plated lavsan-film and the pressure in the insulating space at different forces
compressing the insulation. In determining the values of the coefficient of heat
conductivity there were also found errors in the measurements; for example,
the coefficient of heat conductivity of a given insulator with 1 x 10~° mm Hg as



the pressure in the insulating space and 1 g/ cm? as the specific pressure on
+0. 2
the insulation is equal to A = (1. 1-0. 1> 10”4 mm Hg, while for a pressure of

+4.1
1x 107! mm Hg it is A = {19 -2. 7) 107* W/m degree. The curves show that
the coefficient of heat conductivity of insulation compressed by a force of
1 g/ cm? is independent of the pressure in the insulating space beginning with
1 x 10~ mm Hg and below; for insulation compressed with a force of 1000 g/cm?,
the coefficient of heat conductivity is independent of the pressure beginning with
1 x 10~ mm Hg and lower. With the insulation compressed from 1 to 1000
g/cm? and a pressure in the insulating space equal to 1 x 10~° mm Hg, the
coefficient of heat conductivity increases approximately six times. In case of
a declining vacuum, the coefficients of heat conductivity of insulation at 1 and
1000 g;/cm2 are increasing and come close to one another. At a pressure of
6 x 10~ mm Hg they become equal.

Figure 5 shows the relationship between the heat conductivity of the
same insulation used in Figure 4 and the specific pressure applied to it at
various pressures in the insulating space. It is well shown there that, at a
pressure of less than 1 x 10”2 mm Hg in the insulating space, the coefficient
of heat conductivity increases monotonically with the increase in the load on
the insulation. At a pressure larger than 1 x 10-2 mm Hg, an increased load
on the insulation causes the coefficient of conductivity to decrease at the
beginning and, upon reaching a minimum at a specific pressure of about 100
g/cm?, the coefficient begins to increase.

In the lower part of Figure 5 is drawn a broken-line horizontal whose
ordinate is equal to the value of the coefficient of heat conductivity of the given
insulation measured at a vacuum of 1 x 10~° mm Hg without a load on the insu-
lation, i.e., a minimum coefficient of heat conductivity xmin =0.6 x 10"

mm Hg. Knowing the value of the minimum coefficient of heat conductivity, it
is possible to estimate the share of three types of heat transfer existing in
multilayer insulation, namely: the heat transfer by radiation, by contacts, and
by residual gases in the common thermal flux through the insulation at various
pressures in the insulating space and specific loads applied to it. For example,
the overall thermal flux through the insulation with 4 x 10~® mm Hg as the
pressure in the insulating space and 3 g/cm? as the pressure applied to the
insulation will be proportional to section a-d. The thermal flux by radiation
will be proportional to the section a-b inchided between the axis of the abscissae
and the horizontal line corresponding to the minimum coefficient of heat con-
ductivity of the insulation. The thermal flux through the contacts is proportional

to the section b~c confined between the horizontal line corresponding to xmin




and the curve corresponding to the coefficient of the insulation's heat conduc-
tivity at a pressure of 1 x 10™°> mm Hg. The thermal flux by the residual gases
is determined by the section c-d confined between the curves corresponding to
-coefficients of heat conductivity at pressure in the insulating space equal to
1x107° and 4 x 10~3 mm Hg. The division of the overall thermal flux into its
components is just for orientation, because in reality all types of heat transfer
are mutually related.

Figures 6 and 7 show the coefficients of heat conductivity of insulation
consisting of spun glass and aluminum-plated lavsan-film as functions of the
pressure in the insulating space and the specific pressure applied to the
insulation. As shown, the character of the curves is the same as in Figures
4 and 5 and the only difference is in the absolute values of the coefficients of
heat conductivity. The minimum value of the insulation's coefficient of heat
conductivity at a vacuum of 1 x 10~° mm Hg without pressure on the insulation
is xmin =0.9x107* W/m degree. This value corresponds to the broken

straight line in Figure 7. At a specific pressure of 1 g/cm? and a vacuum of
1 x 107° mm Hg, the coefficient of heat conductivity of the insulation is A =
1.7x107* W/m degree. The coefficient of heat conductivity is considerably
larger at a pressure of 1 x 10”! mm Hg and at a specific pressure on the
+5.7
insulation of 1 g/cm?. It is equal to A = (29. 3 -3. 7> x 1074 W/m degree.
Therefore, it shows that an insulation with a number of shields nearly twice
as many per unit of length has a coefficient of conductivity which is two times
smaller.

The effect of the material of the shields of a multilayer insulation on the
coefficient of heat conductivity is shown in Figure 8. A comparison is made in
Figure 8a of two specimens of insulation with sandpaper as the gasket material.
The shield in one specimen are made of aluminized lavsan (the lighter points on
the curves), and the shield of the other specimen is made of aluminum foil
(dark points on the curves). By comparing these specimens it can be concluded
that the coefficient of heat conductivity of insulation with lavsan shields is some-
what smaller than that of an insulation with aluminum foil shields only when the
insulation is compressed with a force of 1 g/cmz; however, an opposite picture
is obtained for a compression of approximately 1000 g/cmz, where the coefficient
of heat conductivity of an insulation with an aluminum foil shield is lower than
that of an insulation with shields made of aluminized lavsan. Similar results
shown in Figure 8b were obtained by investigating multilayer insulations using
the other gasket material (spun glass).

In Figures 9 and 10 are given the results obtained by measuring the
coefficient of heat conductivity of an insulation consisting of sandpaper and an




aluminized lavsan-film at the boundary temperatures 293 and 4.2°K (Figures
8a and 10a) and 293 and 20.4°K (Figures 9b and 10b). For comparing the
coefficients of heat conductivity obtained at different temperatures of the cold
wall, Figure 11 shows the ratios of the coefficients of heat conductivity of an
insulation consisting of sandpaper and aluminized lavsan-film measured at the
boundary temperatures of 293 and 77.8°K and at 293 and 20. 4°K as a function
of the pressure in the insulating space and of the specific pressure on the
insulation. The same relationships as in Figure 11 are also given in Figure 12,
but for the ratios of coefficients of heat conductivity measured with the cold
wall at the boundary helium and nitric temperatures.

Figure 11 shows that the coefficient of heat conductivity of the same
insulation measured at the temperature of liquid hydrogen is 0. 88 to 0.6, or
is on the average 0.74 times smaller than the coefficient of heat conductivity
measured at the temperature of liquid nitrogen, while the ratio of the boundary
temperatures: (293-20)/(293-77) is equal to 0.79 (shown by broken line in
Figure 11). A similar picture is observed also in measurements with helium.
Figure 12 shows that the insulation's coefficient of heat conductivity measured
at the temperature of liquid helium is 0.8 - 0.65, or on the average is 0.72
times smaller than the coefficient of heat conductivity measured at the temper-
ature of liquid nitrogen, and the ratio of the boundary temperatures is equal
to 0.745 (shown by broken line in Figure 12). This makes it possible to
conclude that the value of the thermal flux through the insulation does not

depend on the boundary cold temperature when the temperature-range amounts
to 77.8 - 4.2°K,

The author is grateful to N. I. Balandikov, V. L. Nekhayevskiy,
Ye. A, Kozyreva, A. A, Goryunov, A, P. Tsvinev, A, I. Kalmykova, V. I.
Kostirko, and to V. P, Vlasov for the assistance in carrying out the experi-
ments and in processing the results.
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Figure 1. The relationship between the volumetric weight y of the
insulation and the pressure p applied to the insulation. 1) EVTI-spun glass
100 mm thick and aluminized lavsan-film 12 u in thickness; 2) SBR-sandpaper
50 uthick and aluminized lavsan-film 12 p thick; 3) SBR-sandpaper 50 u
thick and aluminum foil 10 uin thickness; 4) EVTI-spun glass 100 uthick and
aluminum foil 30 u in thickness.
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Figure 2. The relationship between the number of layers n per 1 cm of
thickness of insulation and the specific pressure p applied to the insulation.
1) EVTI-spun glass 100 uthick and aluminized lavsan-film 12 p thick; 2) SBR-
sandpaper 59 u thick and aluminized lavsan-film 12 uthick; 3) SBR-sandpaper
50 u thick and aluminum foil 10 u in thickness.
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Figure 3. The coefficient of relative deformation { as a function of the
specific pressure p applied to the insulation. 1) SBR-sandpaper 50 u thick and
aluminized lavsan-film 12 uthick; 2) EVTI-spun glass 100 y thick and aluminum
foil 50 pin thickness; 3) SBR-sandpaper 50 u thick and aluminum foil 10 u in
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Figure 4. The relationship between the coefficient of heat conductivity A
of an insulation consisting of 50 u thick SBR-sandpaper and 12 pthick aluminized
lavsan-film and the pressure p in the insulating space (the boundary tempera-
tures are 293 and 77. 8°K, the residual gas is nitrogen) at a specific pressure on
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Figure 5. The coefficient of heat conductivity A of an insulation consisting
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Figure 6. The coefficient of heat conductivity A of insulation consisting
of 100 pthick EVTI-spun glass and aluminized 12 u thick lavsan-film as a func-
tion of the pressure in the insulating space P (the boundary temperatures are
293 and 77. 8°K and the residual gas is nitrogen) at pressures on the insulation
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Figure 7. The coefficient of heat conductivity A of an insulator consist-
ing of 100 u thick EVTI spun glass and 12 u thick aluminized lavsan-film as a
function of the specific pressure p on the insulation (293 and 77.8°K are the
boundary temperatures and nitrogen is the residual gas) at pressures in the
insulating space P, in mm Hg, o - 1 x 1075, m - 1 x 1073, a-4x1073,
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Figure 9. The coefficient of heat conductivity A of insulator consisting
of 50 uthick SBR-sandpaper and 12 uthick aluminized lavsan-film as a function
of the specific pressure on the insulation at various pressures in the insulating
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hydrogen as the residual gas).
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Figure 11. Relationship between the ratios of coefficients of heat
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thick aluminized lavsan-film measured at boundary temperatures of 293 and
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